2.6: Solving Absolute Value Equations and Inequalities

Absolute Value Equations

Recall that the absolute value 63 of a real number \(a\), denoted \(|a|\), is defined as the distance between zero (the origin) and the graph of that real number on the number line. For example, \(|−3|=3\) and \(|3|=3\).

b4aaf730a9b49a73a73f1eee65bc4cc1.png

In addition, the absolute value of a real number can be defined algebraically as a piecewise function.

Given this definition, \(|3| = 3\) and \(|−3| = − (−3) = 3\).Therefore, the equation \(|x| = 3\) has two solutions for \(x\), namely \(\\). In general, given any algebraic expression \(X\) and any positive number \(p\):

\(\text\: | X | = p \text < then >X = - p \text < or >X = p\)

In other words, the argument of the absolute value 64 \(X\) can be either positive or negative \(p\). Use this theorem to solve absolute value equations algebraically.

Solution

In this case, the argument of the absolute value is \(x+2\) and must be equal to \(3\) or \(−3\).

4a781f54e79090a87431680588379e8f.png

Therefore, to solve this absolute value equation, set \(x+2\) equal to \(±3\) and solve each linear equation as usual.

Answer:

The solutions are \(−5\) and \(1\).

To visualize these solutions, graph the functions on either side of the equal sign on the same set of coordinate axes. In this case, \(f (x) = |x + 2|\) is an absolute value function shifted two units horizontally to the left, and \(g (x) = 3\) is a constant function whose graph is a horizontal line. Determine the \(x\)-values where \(f (x) = g (x)\).

8d0f6d91a1a35018cf3b4c0ce4b152da.png

From the graph we can see that both functions coincide where \(x = −5\) and \(x = 1\). The solutions correspond to the points of intersection.

Solve: \(| 2 x + 3 | = 4\).

Solution

Here the argument of the absolute value is \(2x+3\) and can be equal to \(-4\) or \(4\).

Check to see if these solutions satisfy the original equation.

Table \(\PageIndex\)
Check \(x=-\frac\) Check \(x=\frac\)
\(\begin | 2 x + 3 | & = 4 \\ \left| 2 \left( \color < 2 >> \right) + 3 \right| & = 4 \\ | - 7 + 3 | & = 4 \\ | - 4 | & = 4 \\ 4 & = 4 \:\:\color \end\) \(\begin < r > < | 2 x + 3 | = 4 >\\ < \left| 2 \left( \color < 2 >> \right) + 3 \right| = 4 > \\ < | 1 + 3 | = 4 >\\ < | 4 | = 4 >\\ < 4 = 4 >\:\:\color \end\)

Answer:

The solutions are \(-\frac\) and \(\frac\).

To apply the theorem, the absolute value must be isolated. The general steps for solving absolute value equations are outlined in the following example.

Solve: \(2 |5x − 1| − 3 = 9\).

Solution

Step 1: Isolate the absolute value to obtain the form \(|X| = p\).

Step 2: Set the argument of the absolute value equal to \(±p\). Here the argument is \(5x − 1\) and \(p = 6\).

\(5 x - 1 = - 6 \text < or >5 x - 1 = 6\)

Step 3: Solve each of the resulting linear equations.

Step 4: Verify the solutions in the original equation.

Table \(\PageIndex\)
Check \(x=-1\) Check \(x=\frac\)
\(\begin 2 | 5 x - 1 | - 3 & = 9 \\ 2 | 5 ( \color\color < )>- 1 | - 3 & = 9 \\ 2 | - 5 - 1 | - 3 & = 9 \\ 2 | - 6 | - 3 & = 9 \\ 12 - 3 & = 9 \\ 9 & = 9 \color\end\) \(\begin 2 | 5 x - 1 | - 3 & = 9 \\ 2 \left| 5 \left( \color < 5 >> \right) - 1 \right| - 3 & = 9 \\ 2 | 7 - 1 | - 3 & = 9 \\ 2 | 6 | - 3 & = 9 \\ 12 - 3 & = 9 \\ 9 & = 9 \color \end\)

Answer:

The solutions are \(-1\) and \(\frac\)

Solve: \(2 - 7 | x + 4 | = - 12\).

Answer

Not all absolute value equations will have two solutions.

Solve: \(| 7 x - 6 | + 3 = 3\).

Solution

Begin by isolating the absolute value.

Only zero has the absolute value of zero, \(|0| = 0\). In other words, \(|X| = 0\) has one solution, namely \(X = 0\). Therefore, set the argument \(7x − 6\) equal to zero and then solve for \(x\).

\(\begin 7 x - 6 & = 0 \\ 7 x & = 6 \\ x & = \frac < 6 > < 7 >\end\)

Geometrically, one solution corresponds to one point of intersection.

8cfd0197857b87c9691270321c077d08.png

Answer:

The solution is \(\frac\).

Solution

Begin by isolating the absolute value.

In this case, we can see that the isolated absolute value is equal to a negative number. Recall that the absolute value will always be positive. Therefore, we conclude that there is no solution. Geometrically, there is no point of intersection.

f800ff00fb0c0579741140bd63f30a6c.png

Answer:

There is no solution, \(Ø\).

If given an equation with two absolute values of the form \(| a | = | b |\), then \(b\) must be the same as \(a\) or opposite. For example, if \(a=5\), then \(b = \pm 5\) and we have:

\(| 5 | = | - 5 | \text < or >| 5 | = | + 5 |\)

In general, given algebraic expressions \(X\) and \(Y\):

\(\text | X | = | Y | \text < then >X = - Y \text < or >X = Y\).

In other words, if two absolute value expressions are equal, then the arguments can be the same or opposite.

Solve: \(| 2 x - 5 | = | x - 4 |\).

Solution

Set \(2x-5\) equal to \(\pm ( x - 4 )\) and then solve each linear equation.

To check, we substitute these values into the original equation.

Table \(\PageIndex\)
Check \(x=1\) Check \(x=3\)
\(\begin | 2 x - 5 | & = | x - 4 | \\ | 2 ( \color\color < )>- 5 | & = | ( \color\color < )>- 4 | \\ | - 3 | & = | - 3 | \\ 3 & = 3 \color< ✓>\end\) \(\begin | 2 x - 5 | & = | x - 4 | \\ | 2 ( \color\color < )>- 5 | & = | ( \color\color < )>- 4 | \\ | 1 | & = | - 1 | \\ 1 & = 1 \color\end\)

As an exercise, use a graphing utility to graph both \(f(x)= |2x-5|\) and \(g(x)=|x-4|\) on the same set of axes. Verify that the graphs intersect where \(x\) is equal to \(1\) and \(3\).

Answer:

The solutions are \(1\) and \(3\).

Solve: \(| x + 10 | = | 3 x - 2 |\).

Answer

Absolute Value Inequalities

We begin by examining the solutions to the following inequality:

The absolute value of a number represents the distance from the origin. Therefore, this equation describes all numbers whose distance from zero is less than or equal to \(3\). We can graph this solution set by shading all such numbers.

54d7fb08641f26cbbcabbdf76cd2ada7.png

Certainly we can see that there are infinitely many solutions to \(|x|≤3\) bounded by \(−3\) and \(3\). Express this solution set using set notation or interval notation as follows:

In this text, we will choose to express solutions in interval notation. In general, given any algebraic expression \(X\) and any positive number \(p\):

\(\text | X | \leq p \text < then >- p \leq X \leq p\).

This theorem holds true for strict inequalities as well. In other words, we can convert any absolute value inequality involving "less than" into a compound inequality which can be solved as usual.

Solve and graph the solution set: \(|x+2|

Solution

Bound the argument \(x+2\) by \(−3\) and \(3\) and solve.

Here we use open dots to indicate strict inequalities on the graph as follows.

d198f40ad4498592e3fb836345d5d10d.png

Answer:

Using interval notation, \((−5,1)\).

2f9d712a7228e5ab4d7b725b4b5dd02a.png

The solution consists of all \(x\)-values where the graph of \(f\) is below the graph of \(g\). In this case, we can see that \(|x + 2| < 3\) where the \(x\)-values are between \(−5\) and \(1\). To apply the theorem, we must first isolate the absolute value.

Solve: \(4 |x + 3| − 7 ≤ 5\).

Solution

Begin by isolating the absolute value.

Next, apply the theorem and rewrite the absolute value inequality as a compound inequality.

Shade the solutions on a number line and present the answer in interval notation. Here we use closed dots to indicate inclusive inequalities on the graph as follows:

8abae6a57d4658e1e28b81d29a8ba467.png

Answer:

Using interval notation, \([−6,0]\)

Solve and graph the solution set: \(3 + | 4 x - 5 | < 8\).

Answer

Interval notation: \((0, \frac)\)

53fbc057eea3477b5709c94560299f26.png

Next, we examine the solutions to an inequality that involves "greater than," as in the following example:

This inequality describes all numbers whose distance from the origin is greater than or equal to \(3\). On a graph, we can shade all such numbers.

ee5443c82bae2d950182100b7ab9ff13.png

There are infinitely many solutions that can be expressed using set notation and interval notation as follows:

In general, given any algebraic expression \(X\) and any positive number \(p\):

\(\text | X | \geq p \text < then >X \leq - p \text < or >X \geq p\).

The theorem holds true for strict inequalities as well. In other words, we can convert any absolute value inequality involving “greater than” into a compound inequality that describes two intervals.

Solve and graph the solution set: \(|x+2|>3\).

Solution

The argument \(x+2\) must be less than \(−3\) or greater than \(3\).

12b84b5b3331a000842bb1191680226e.png

Answer:

Using interval notation, \((−∞,−5)∪(1,∞)\).

The solution to \(|x + 2| > 3\) can be interpreted graphically if we let \(f (x) = |x + 2|\) and \(g (x) = 3\) and then determine where \(f(x) > g (x)\) by graphing both \(f\) and \(g\) on the same set of axes.

The solution consists of all \(x\)-values where the graph of \(f\) is above the graph of \(g\). In this case, we can see that \(|x + 2| > 3\) where the \(x\)-values are less than \(−5\) or are greater than \(1\). To apply the theorem we must first isolate the absolute value.

Solve: \(3 + 2 |4x − 7| ≥ 13\).

Solution

Begin by isolating the absolute value.

Next, apply the theorem and rewrite the absolute value inequality as a compound inequality.

\(\begin &\quad\quad\quad\quad\:\:\:|4x-7|\geq 5 \\ 4 x - 7 \leq - 5 \quad \text < or >\quad 4 x - 7 \geq 5 \end\)

Shade the solutions on a number line and present the answer using interval notation.

06fafde1bcd818b99ee494ab4c092fc0.png

Answer:

Using interval notation, \((−∞,\frac < 1 >< 2 >]∪[3,∞)\)

Solve and graph: \(3 | 6 x + 5 | - 2 > 13\).

Answer

Using interval notation, \(\left( - \infty , - \frac < 5 > < 3 >\right) \cup ( 0 , \infty )\)

8775b7be1a775881d4ce3e89ac626c6c.png

Up to this point, the solution sets of linear absolute value inequalities have consisted of a single bounded interval or two unbounded intervals. This is not always the case.

Solve and graph: \(|2x−1|+5>2\).

Solution

Begin by isolating the absolute value.

Notice that we have an absolute value greater than a negative number. For any real number x the absolute value of the argument will always be positive. Hence, any real number will solve this inequality.

1ae423963434b72a27df0ffb19ce6b24.png

Geometrically, we can see that \(f(x)=|2x−1|+5\) is always greater than \(g(x)=2\).

4df21f5c6ca04b0cb00c064214bbf386.png

Answer:

All real numbers, \(ℝ\).

Solve and graph: \(|x+1|+4≤3\).

Solution

Begin by isolating the absolute value.

In this case, we can see that the isolated absolute value is to be less than or equal to a negative number. Again, the absolute value will always be positive; hence, we can conclude that there is no solution.

Geometrically, we can see that \(f(x)=|x+1|+4\) is never less than \(g(x)=3\).

611732db35c3bdba71871ef237256092.png

Answer: \(Ø\)

In summary, there are three cases for absolute value equations and inequalities. The relations \(=, \) and \(≥\) determine which theorem to apply.

Case 1: An absolute value equation:

\(\begin < c > < \text < If >| X | = p > \\ < \text < then >X = - p \text < or >X = p > \end\) 1e1718f40151f1b3c13b7f85115a285a.png

Case 2: An absolute value inequality involving "less than."

\(\begin < c > < \text < If >| X | \leq p > \\ < \text < then >- p \leq X \leq p > \end\) fdc16175aae956b7825143cc652dbb53.png

Case 3: An absolute value inequality involving "greater than."

\(\begin < c > < \text < If >| X | \geq p > \\ < \text < then >X \leq - p \text < or >X \geq p > \end\) 0519655a76754718478f57cf009322ad.png

Key Takeaways

  1. \(|x| = 9\)
  2. \(|x| = 1\)
  3. \(|x − 7| = 3\)
  4. \(|x − 2| = 5\)
  5. \(|x + 12| = 0\)
  6. \(|x + 8| = 0\)
  7. \(|x + 6| = −1\)
  8. \(|x − 2| = −5\)
  9. \(|2y − 1| = 13\)
  10. \(|3y − 5| = 16\)
  11. \(|−5t + 1| = 6\)
  12. \(|−6t + 2| = 8\)
  13. \(\left| \frac < 1 >< 2 >x - \frac < 2 >< 3 >\right| = \frac < 1 >< 6 >\)
  14. \(\left| \frac < 2 >< 3 >x + \frac < 1 >< 4 >\right| = \frac < 5 >< 12 >\)
  15. \(|0.2x + 1.6| = 3.6\)
  16. \(|0.3x − 1.2| = 2.7\)
  17. \(| 5 (y − 4) + 5| = 15\)
  18. \(| 2 (y − 1) − 3y| = 4\)
  19. \(|5x − 7| + 3 = 10\)
  20. \(|3x − 8| − 2 = 6\)
  21. \(9 + |7x + 1| = 9\)
  22. \(4 − |2x − 3| = 4\)
  23. \(3 |x − 8| + 4 = 25\)
  24. \(2 |x + 6| − 3 = 17\)
  25. \(9 + 5 |x − 1| = 4\)
  26. \(11 + 6 |x − 4| = 5\)
  27. \(8 − 2 |x + 1| = 4\)
  28. \(12 − 5 |x − 2| = 2\)
  29. \(\frac|x − 5| − \frac= −\frac\)
  30. \(\frac < 1 >< 3 >\left| x + \frac < 1 >< 2 >\right| + 1 = \frac < 3 >< 2 >\)
  31. \(−2 |7x + 1| − 4 = 2\)
  32. \(−3 |5x − 3| + 2 = 5\)
  33. \(1.2 |t − 2.8| − 4.8 = 1.2\)
  34. \(3.6 | t + 1.8| − 2.6 = 8.2\)
  35. \(\frac|2 (3x − 1) − 3| + 1 = 4\)
  36. \(\frac|4 (3x + 1) − 1| − 5 = 3\)
  37. \(|5x − 7| = |4x − 2|\)
  38. \(|8x − 3| = |7x − 12|\)
  39. \(|5y + 8| = |2y + 3|\)
  40. \(|7y + 2| = |5y − 2|\)
  41. \(|5 (x − 2)| = |3x|\)
  42. \(|3 (x + 1)| = |7x|\)
  43. \(\left| \frac < 2 >< 3 >x + \frac < 1 >< 2 >\right| = \left| \frac < 3 >< 2 >x - \frac < 1 >< 3 >\right|\)
  44. \(\left| \frac < 3 >< 5 >x - \frac < 5 >< 2 >\right| = \left| \frac < 1 >< 2 >x + \frac < 2 >< 5 >\right|\)
  45. \(|1.5t − 3.5| = |2.5t + 0.5|\)
  46. \(|3.2t − 1.4| = |1.8t + 2.8|\)
  47. \(|5 − 3 (2x + 1)| = |5x + 2|\)
  48. \(|3 − 2 (3x − 2)| = |4x − 1|\)

Solve and graph the solution set. In addition, give the solution set in interval notation.

  1. Solve for \(x: p |ax + b| − q = 0\)
  2. Solve for \(x: |ax + b| = |p + q|\)

Solve and graph the solution set. In addition, give the solution set in interval notation.

  1. \(|x| < 5\)
  2. \(|x| ≤ 2\)
  3. \(|x + 3| ≤ 1\)
  4. \(|x − 7| < 8\)
  5. \(|x − 5| < 0\)
  6. \(|x + 8| < −7\)
  7. \(|2x − 3| ≤ 5\)
  8. \(|3x − 9| < 27\)
  9. \(|5x − 3| ≤ 0\)
  10. \(|10x + 5| < 25\)
  11. \(\left| \frac < 1 >< 3 >x - \frac < 2 >< 3 >\right| \leq 1\)
  12. \(\left| \frac < 1 >< 12 >x - \frac < 1 >< 2 >\right| \leq \frac < 3 >< 2 >\)
  13. \(|x| ≥ 5\)
  14. \(|x| > 1\)
  15. \(|x + 2| > 8\)
  16. \(|x − 7| ≥ 11\)
  17. \(|x + 5| ≥ 0\)
  18. \(|x − 12| > −4\)
  19. \(|2x − 5| ≥ 9\)
  20. \(|2x + 3| ≥ 15\)
  21. \(|4x − 3| > 9\)
  22. \(|3x − 7| ≥ 2\)
  23. \(\left| \frac < 1 >< 7 >x - \frac < 3 >< 14 >\right| > \frac < 1 >< 2 >\)
  24. \(\left| \frac < 1 >< 2 >x + \frac < 5 >< 4 >\right| > \frac < 3 >< 4 >\)

18dc3829d035ad7a33a362ec1a7e5f09.png

4cb524885d5df3a2715ff992dcd5a6b3.png

5fe987d3f662f3552c53cb4c800e585c.png

e698c903acbeaae5e83c1bc9c6e8845a.png

13. \(( - \infty , - 5 ] \cup [ 5 , \infty )\);

a7d47bfc737e19a60beecd34fdcbade7.png

15. \(( - \infty , - 10 ) \cup ( 6 , \infty )\);

9d1fb16fd22556532e81ef67b14c73a1.png

6d8a25b4d71237af99c7a5f08d9d21e2.png

19. \(( - \infty , - 2 ] \cup [ 7 , \infty )\);

d1e745f298730b5b44f34dd56e033df2.png

21. \(\left( - \infty , - \frac < 3 > < 2 >\right) \cup ( 3 , \infty )\);

0010b88a922a03db183e099d487bc54b.png

23. \(( - \infty , - 2 ) \cup ( 5 , \infty )\);

33b71142f5fcc934441a9b670c22e110.png

Solve and graph the solution set.

  1. \(|3 (2x − 1)| > 15\)
  2. \(|3 (x − 3)| ≤ 21\)
  3. \(−5 |x − 4| > −15\)
  4. \(−3 |x + 8| ≤ −18\)
  5. \(6 − 3 |x − 4| < 3\)
  6. \(5 − 2 |x + 4| ≤ −7\)
  7. \(6 − |2x + 5| < −5\)
  8. \(25 − |3x − 7| ≥ 18\)
  9. \(|2x + 25| − 4 ≥ 9\)
  10. \(|3 (x − 3)| − 8 < −2\)
  11. \(2 |9x + 5| + 8 > 6\)
  12. \(3 |4x − 9| + 4 < −1\)
  13. \(5 |4 − 3x| − 10 ≤ 0\)
  14. \(6 |1 − 4x| − 24 ≥ 0\)
  15. \(3 − 2 |x + 7| > −7\)
  16. \(9 − 7 |x − 4| < −12\)
  17. \(|5 (x − 4) + 5| > 15\)
  18. \(|3 (x − 9) + 6| ≤ 3\)
  19. \(\left| \frac < 1 >< 3 >( x + 2 ) - \frac < 7 >< 6 >\right| - \frac < 2 >< 3 >\leq - \frac < 1 >< 6 >\)
  20. \(\left| \frac < 1 >< 10 >( x + 3 ) - \frac < 1 >< 2 >\right| + \frac < 3 >< 20 >> \frac < 1 >< 4 >\)
  21. \(12 + 4 |2x − 1| ≤ 12\)
  22. \(3 − 6 |3x − 2| ≥ 3\)
  23. \(\frac|2x − 1| + 3 < 4\)
  24. 2 |\fracx + \frac| − 3 ≤ −1\)
  25. \(7 − |−4 + 2 (3 − 4x)| > 5\)
  26. \(9 − |6 + 3 (2x − 1)| ≥ 8\)
  27. \(\frac < 3 >< 2 >- \left| 2 - \frac < 1 >< 3 >x \right| < \frac < 1 >< 2 >\)
  28. \(\frac < 5 >< 4 >- \left| \frac < 1 >< 2 >- \frac < 1 >< 4 >x \right| < \frac < 3 >< 8 >\)

1. \(( - \infty , - 2 ) \cup ( 3 , \infty )\);

ebcbc7e9a8c69eaf7dc93e0a895be02a.png

6a84ac9f29153422122cecb7ae173a27.png

5. \(( - \infty , 3 ) \cup ( 5 , \infty )\);

291445ead16c4e9f28633d76d92ebd51.png

7. \(( - \infty , - 8 ) \cup ( 3 , \infty )\);

22b7aed415f504f8381f18d4e7776f45.png

9. \(( - \infty , - 19 ] \cup [ - 6 , \infty )\);

13fa6f328decfd285cbe4425b06e4c93.png

6d8a25b4d71237af99c7a5f08d9d21e2.png

13. \(\left[ \frac < 2 > < 3 >, 2 \right]\);

ceec08d41c2361f4613cd5e5d213844e.png

9964b1ed11f681d97f2fa612af08d243.png

17. \(( - \infty , 0 ) \cup ( 6 , \infty )\);

755b3ba705f6729a468c1d53bd54200a.png

1a67f6f2059288d7eb289b5b91888451.png

97abc5e7029c6c2abb111a8d6172fc3f.png

23. \(\left( - \frac < 1 > < 2 >, \frac < 3 > < 2 >\right)\);

9940bee4840619748881b6ee166fb60c.png

25. \(\left( 0 , \frac < 1 > < 2 >\right)\);

629e476a686ff5681e41138257e2f57e.png

27. \(( - \infty , 3 ) \cup ( 9 , \infty )\);

6f9be38567ebfe5e3669e0e423e0f33b.png

Assume all variables in the denominator are nonzero.

  1. Solve for \(x\) where \(a, p > 0: p |ax + b| − q ≤ 0\)
  2. Solve for \(x\) where \(a, p > 0: p |ax + b| − q ≥ 0\)

Given the graph of \(f\) and \(g\), determine the \(x\)-values where:

bc0d2fc192eab76856e471f5ac12e232.png

c30fedbf670eed3e2543ae2a040dd312.png

dc94f63ebaac262f5be8b9622190bb50.png

abe1275f6595df69b24710504d392f87.png

Answer

  1. Make three note cards, one for each of the three cases described in this section. On one side write the theorem, and on the other write a complete solution to a representative example. Share your strategy for identifying and solving absolute value equations and inequalities on the discussion board.
  2. Make your own examples of absolute value equations and inequalities that have no solution, at least one for each case described in this section. Illustrate your examples with a graph.

1. Answer may vary

Footnotes

63 The distance from the graph of a number \(a\) to zero on a number line, denoted \(|a|\).

64 The number or expression inside the absolute value.

This page titled 2.6: Solving Absolute Value Equations and Inequalities is shared under a CC BY-NC-SA 3.0 license and was authored, remixed, and/or curated by Anonymous via source content that was edited to the style and standards of the LibreTexts platform.

  1. Back to top

Recommended articles

  1. Article type Section or Page Author Anonymous License CC BY-NC-SA License Version 3.0 OER program or Publisher The Publisher Who Must Not Be Named Show Page TOC no
  2. Tags
    1. source@https://2012books.lardbucket.org/books/advanced-algebra/index.html